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The Cape Cod region of Massachusetts has
experienced elevated incidence of cancer com-
pared with statewide averages. At the public’s
request, Massachusetts funded a population-
based case–control study of a five-town area of
Cape Cod. The Upper Cape Cod Cancer
Incidence Study (1) examined cancer in rela-
tion to numerous hypothesized environmental
factors, including perchloroethylene-contami-
nated drinking water (2–5), proximity to cran-
berry cultivation (6), and potential exposure to
airborne combustion by-products due to the
burning of military munitions waste (7).
However, the investigated exposures afforded
only a partial explanation of the excess cancer
incidence. In response, we conducted an
exploratory spatial analysis of breast cancer
incidence and residential location. Our goal
was to describe associations between residen-
tial location and breast cancer incidence at
geographic scales finer than the study region as
a whole. The rationale was that identifying
localized hot spots may lead to the identifica-
tion of causal hypotheses.

Although much research has been done
to analyze spatially the occurrence of cancer
and other health outcomes (8–15), methods
taking full advantage of the characteristics of
case–control data have not been applied. To
investigate the relation between breast cancer
incidence and residential location with data
from the Upper Cape Cod Cancer Incidence
Study, we developed an exploratory model
designed to map relative incidence rates by
residential location, using an individual level
of analysis and taking account of individual
risk factors.

Methods
Selection and enrollment of study population.
Cases were all incident cancers of the breast
(n = 334) diagnosed from 1983 through
1986 among permanent residents of five
towns in the Upper Cape Cod area of
Massachusetts (Figure 1) and reported to the
Massachusetts Cancer Registry. We selected
controls from among demographically simi-
lar permanent residents of the Upper Cape
Cod towns during the years from 1983 to
1986. We needed three sources to identify
controls efficiently, because many cases were
elderly or deceased when the study began.
We chose living controls less than 65 years
old using random-digit dialing, and those 65
years and older randomly from lists of
Medicare beneficiaries furnished by the
Health Care Financing Administration
(HCFA). Deceased controls of ages similar to
those of deceased cases we chose randomly
from a file furnished by the Massachusetts
Department of Vital Statistics and Research.
The three sources of controls are considered
to be complete with respect to their target
populations (< 65 years old, ≥ 65 years, and
deceased). Random selection within each of
these sources should not be systematically
biased with respect to residential location.
The methods of subject selection are
reported in more detail elsewhere (3).

The selected controls served as a source
population of controls for nine cancer types
in the Upper Cape Cod Cancer Incidence
Study. Overall, we interviewed 79% of the
cases, 76% of HCFA controls, 79% of
deceased controls (we interviewed a proxy on

behalf of subjects who were deceased), and
74% of contacted and eligible random-digit
dial controls (Table 1). The demographic
characteristics of interviewed and noninter-
viewed subjects were similar. We selected the
control group for the breast cancer analysis
by stratifying the breast cancer cases on the
basis of age (in decades), vital status, and, if
deceased, year of death, and then choosing
all female controls who fell into a stratum
with at least one case, yielding 763 controls
(Table 2). We randomly assigned index years
(comparable with year of diagnosis) to the
controls in a weighted design to achieve
identical distributions of diagnosis and index
years. We excluded controls who moved to
the Upper Cape Cod area after the index
year (n = 46), as well as cases (n = 7) and
controls (n = 31) with incomplete residency
histories, leaving 258 breast cancer cases and
686 controls for the final analysis.

Mapping and digitizing of residency his-
tory. We asked subjects, or their proxies, to
recall places and calendar years of residence
in the five-town study area, dating back as far
as 1943 (40 years before the earliest diagnosis
year). We transcribed full addresses with
street name, number, and village or town-
ship, or in some cases street names alone,
cross streets, or nearest landmarks, and used
tax assessors’ books to determine the parcel of
land corresponding to a street address. We
then recorded residential location on a set of
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enlarged paper reproductions of 1:24,000-
scale U.S. Geological Survey maps. This
enabled us to map complete addresses to
within an estimated accuracy of 100 meters.
We mapped all subjects without knowledge
of case status.

The original database of residency infor-
mation was on paper maps because the Upper
Cape Cod Cancer Incidence Study was con-
ducted before Geographic Information
Systems were commonplace. For the present
investigation, we transferred residential loca-
tions from the paper database to digital form
using a large (36 × 48-in) digitizing board.

Exploratory model for studying spatial
associations using individual-level data. To
explore associations between residential loca-
tion and cancer status, we defined indepen-
dent “exposure” variables by dividing the
study area into subregions. Each subregion
(s1… sn) became a dichotomous (yes/no)
“regional membership” attribute for individ-
ual subjects. For example, a “yes” value for s1
meant that the subject had lived within the
bounds of region s1. Implementing this
exploratory model required choosing a pro-
cedure for regionalizing the data (i.e., defin-
ing boundaries for s1…sn); a type of effect
measure; a reference population; and a
method for data visualization.

We developed two approaches, using dif-
ferent procedures for regionalizing the data.
The first method used a set of regularly
shaped grids (multiscale grids), whereas the
second method used overlapping circles
(adaptive k-smoothing). These two
approaches share the same underlying
exploratory model, effect measure (relative
risk), and reference population (total study
population) but lend themselves to different
modes of visual summarization (shaded
regions vs. image and surface plots). A third
method (k-smoothing–derived polycircles)

summarized the results of adaptive k-smooth-
ing using an exclusive reference group.

Regionalization: multiscale grids. We
divided a 37 × 37 km area encompassing the
five Upper Cape Cod towns into three grids
(large, medium, and small scales). Figure 2
shows the 16 (4 × 4), 64 (8 × 8), and 256 (16
× 16) grid cells, whose respective dimensions
are 9.3, 4.6, and 2.3 km. We then coded

subject residency into a dichotomous (yes/no)
variable for each grid cell. A “yes” value repre-
sents “ever having lived within” a grid cell.
We counted each subject only once per grid
cell, but some may have been counted in
more than one grid cell because the data
included historical residences; we did not
count residency after the diagnosis year for
cases, or after the index year for controls. We
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Figure 1. Location of study area.
Northeast United States
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Table 1. Enrollment of breast cancer cases and controls.

HCFA Deceased Random-digit
Enrollment category Cases controls controls dial controls

Selected 334 611 918 2,236
Excluded

Never located or contacted 33 21 97 456
Ineligible 6 53 27 1,531
Physician or subject refusal 30 73 71 65

Interviewed 265 464 723 184

Table 2. Selection of breast cancer cases and controls for analysis.

Selection category Cases Controls

Interviewed 265 1,371
Selected controls

Within age and vital status strata of cases NA 763
Exclusions

Moved to Cape Cod after index year NA 46
Incomplete residential history 7 31

Analyzed 258 686

NA, not analyzed; these categories apply only to controls.

Figure 2. Multiscale grids.

9.3 km grid 4.6 km grid 2.3 km grid



removed from analysis grid cells containing
fewer than three cases or fewer than three
controls to facilitate adjusted analyses and
curb the influence of unstable estimates.

Regionalization: adaptive k-smoothing.
A second method for regionalizing residen-
tial location used a simultaneous smoothing
and stabilization parameter. Adaptive k-
smoothing defines regions using each sub-
ject’s residential location as a focal point of
a circle (Figure 3). The circle is just large
enough to contain a prespecified number, k,
of control subjects. Thus, the size  of the
circle used to regionalize the data is deter-
mined by the kth nearest neighboring con-
trol subject to the case or control focal
subject. We used three values for k—50, 30,
and 10 controls—in separate analyses, to
investigate how stability and scale alter the
spatial distribution of association. As in the
grid cell method, we defined regional mem-
bership in terms of residency history. We
considered a case or control a member of
the circular region surrounding the focal
residence if the subject ever resided within
its bounds. In contrast to the multiscale
grids, the circular regions defined by the set
of k nearest neighbors are overlapping and
act as data smoothers. The algorithm also
adapts to differences in underlying popula-
tion density, allowing spatially high-resolu-
tion (small circle) analysis where data are
dense and lower resolution (large circle)
analysis where data are sparse.

Measure of effect and reference population.
We used a rate ratio measure of effect, com-
puting relative disease incidence measures
that compare subgroups with the study
population as a whole. 

For every region (si) created by a grid cell
or adaptively defined circle, we calculated a
case-to-control ratio: the number of cases of
disease divided by the number of controls.
This ratio is conventionally called a “disease
odds.” Rothman and Greenland (16) term
this ratio a “pseudo-rate,” because it is simi-
lar to a rate. The pseudo-rate comprises the
number of cases divided by a sample of the

person-time giving rise to them, whereas a
rate would comprise the number of cases
divided by the total person-time. We divided
each regional group’s pseudo-rate by the
pseudo-rate of the entire study population.
This odds ratio (OR) estimates the incidence
rate ratio of within-region (s1…sn) incidence
to total study population incidence. We used
the entire study population as the reference
population to derive comparable rate ratio
estimates using the various regionalizations,
and also to ensure a sufficiently large refer-
ence group to provide stable quantification of
the associations between and among disease
status and potentially confounding attributes.

Adjusted ORs and potential confounders.
We used multiple logistic regression models
to control simultaneously for potentially
confounding individual attributes. For every
subregion (s1…sn), we constructed a regres-
sion model containing an indicator variable
for the regional membership attribute (e.g.,
s1 = 1 for subjects residing in s1; s1 = 0 for the

reference population), additional variables
for the selection attributes (age at diagnosis
or index year, vital status at time of inter-
view), and potential confounders: family his-
tory of breast cancer in a first-degree relative
(mother or sister), age at first live birth or
stillbirth (by age group vs. nulliparous), and
prior history of breast cancer or benign
breast disease. We used the modeled coeffi-
cient of the regional membership variable to
compute an adjusted OR.

Visual summarization. For the grid ORs,
we divided crude ORs > 1 into quartiles and
then color-shaded each of the upper three
quartiles of the grids. This rendered a choro-
pleth, or map of regions shaded by value. We
used the same cut points to create choropleths
of adjusted ORs. We replicated the process
for the three grid scales.

We referenced crude and adjusted ORs
from adaptive k-smoothing as point locations
(the residential address of each subject). For
these results, we used continuous modes of
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Figure 3. Example of circles created for adaptive
k-smoothing: selection of circles drawn just large
enough to include a prespecified number (k) of
controls.

Table 3. Distribution of selected characteristics of breast cancer cases and controls.

Percent cases Percent controls
Characteristic (n = 258) (n = 686)

Caucasian 98.4 96.8
Age at diagnosis or index year (years)

1–49 12.0 7.1
50–59 14.0 10.2
60–69 31.4 33.1
70–79 26.4 29.4
≥ 80 16.3 20.1

Educational level at least 12 years 83.1 82.7
Alive at interview 67.4 55.1
Age at first live birth or stillbirth (years)

< 30 55.4 61.9
≥ 30 14.0 13.3
Nulliparous 30.6 24.8

Prior breast cancer or benign breast diseasea 14.5 23.2
Family history of breast cancerb 19.2 8.8
Postmenopausal at diagnosis or index year 88.0 92.0
Religion

Roman Catholic or Protestant 92.6 94.0
Jewish 3.5 3.1
Other/no response 3.9 2.9

aBefore current diagnosis for cases. bMother and/or sister.

Figure 4. Distribution of control (A) and case (B) residences. Each dot indicates one subject residence,
randomly placed within 1.2 km grid cells (not shown).

Focal subject residences

Cases
Controls

A B

5 km 5 km0 5 km 5 km0



representation—image and surface plots—
after interpolating between point locations.
We accomplished interpolation by kriging, a
method that fills in values between points by
means of a sophisticated data-averaging algo-
rithm (17). Weights are derived by calculat-
ing the dependence of variability on the
degree of separation between observed
points. The inverse variance estimates then
become the weights in a weighted average
of data values. We generated image and sur-
face plots from the continuous longitude
(x), latitude (y), and kriged OR (z) data.
Surface plots represent the OR values as
height above the x–y plane, in a three-
dimensional perspective. Image plots code
the OR values on a continuous rainbow
color scale (violet to red, signifying low to
high values), creating something akin to a
choropleth but with finer spatial and OR
resolution. We masked out the region
falling outside the boundaries of the five-
town study area of the image plots.

Polycircles derived from k-smoothing.
For each k parameter (50, 30, and 10 con-
trols), we selected focal subjects whose k-
smoothed OR was in the upper 2.5% of the
distribution of adjusted ORs. This selection
defined a set of circles—some overlapping
and some not. We combined overlapping
circles to create fixed-boundary regions,
termed “polycircles.” Because these polycir-
cles were derived from the highest ORs
obtained from k-smoothing, they constitute
a collection of “hot spots.” 

We then computed two different types
of ORs. First, a crude OR compared the
pseudo-rate of subjects who ever lived within
a polycircle to the pseudo-rate of subjects
who never lived within any polycircle.
Second, we estimated a multiregion adjusted
OR by a multivariate logistic regression
model that included a set of indicator vari-
ables denoting whether a subject had ever
resided within each polycircle, plus the same
set of selection variables and potential con-
founders as in the adjusted analyses for mul-
tiscale grids and k-smoothing circles. We
used the modeled coefficient of the regional
membership variable to estimate the
adjusted OR for each polycircular region.
We computed 95% confidence intervals
(CIs) without adjustment for multiple com-
parisons (18). The reference population for
these analyses is the subpopulation that only
lived outside the polycircular regions. 

Results

The women in this study population were
mostly elderly, Caucasian, educated at the
high school level or beyond, and post-
menopausal (Table 3). As expected, a higher
percentage of cases than controls reported a
family history of breast cancer, nulliparity,

and late age at first birth. However, a some-
what lower percentage of cases than controls
reported a prior history of breast cancer and
benign breast disease.

We found 451 Upper Cape residences
from the 258 cases, for an average of 1.7 resi-
dences per case, and 1,111 control residences
from 686 controls, for an average of 1.6
Upper Cape residences per control. Figure 4
shows dot density plots of control residences
and case residences. Subject residences are
spread along the coastlines, are absent from

the central-west region (occupied by the
Massachusetts Military Reservation), and
otherwise tend toward the major town cen-
ters: Falmouth in the southwest and Hyannis
(part of Barnstable) in the central-east. The
most readily apparent difference in relative
density of residences, comparing cases and
controls, occurs in an area just slightly north
of center, where a group of case residences is
surrounded by an area free of case residences;
the same region is scattered relatively uni-
formly with control residences.
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Figure 5. Crude and adjusted ORs by grid cells. All ORs are based on the number of subjects having lived
within each grid cell, relative to the total number of cases (n = 258) and controls (n = 686) analyzed. ORs
were adjusted for age, vital status, family history of breast cancer, age at first live birth or stillbirth, per-
sonal history of prior breast cancer or benign breast disease. (A) Crude ORs by 9.3 km grid cells. (B)
Adjusted ORs by 9.3 km grid cells. (C) Crude ORs by 4.6 km grid cells. (D) Adjusted ORs by 4.6 km grid cells.
(E) Crude ORs by 2.3 km grid cells. (F) Adjusted ORs by 2.3 km grid cells.
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Figure 5 shows choropleths of crude and
adjusted ORs obtained at three different grid
scales. The OR scale is specific to each grid
scale, shading the three highest quartiles
above OR = 1.0. Adjusted results (Figure
5B,D,F), shown to the right of each of the
crude results (Figure 5A,C,E), use the same
cut points as the crude plots. The limits of
the highest and lowest categories have been
extended as necessary to include the highest
and lowest adjusted ORs. With decreasing
geographic scale (top to bottom), data
within each grid cell diminish and the vari-
ability of the ORs increases.

In general, although crude and adjusted
analyses at each scale are very similar, patterns
differ across scales. Large-scale areas associated
with excess incidence tend to resolve into
smaller-scale hot spots, as in the north, but
large-scale grids with little or no excess can
resolve into small-scale grids with elevated
ORs, as in the east-central area. Some large-
scale grids are not represented at smaller
scales, because of a paucity of data, but most
of the large-scale grids in the upper two quar-
tiles of OR magnitude have some representa-
tion at smaller scales. The adjusted results
show only subtle differences when compared
with the crude results. A few grid regions shift
between the two highest OR categories. The
most consistent areas of excess are found
straddling Sandwich and Bourne, to the
northwest, and in Barnstable, to the east (see
Figure 1 for town boundaries).

Figure 6 shows the pattern of crude and
adjusted ORs obtained via k-smoothing.
The OR scale differs for each k parameter
(50, 30, and 10 controls, top to bottom,
respectively) but is the same for crude and
adjusted plots (left and right, respectively). At
the largest k parameter of 50 controls, a large
hot spot is apparent in the northwest area of
the study region (straddling the border
between Sandwich and Bourne), with local-
ized peaks in the east (Figure 6A). Adjusting
the crude values depresses the northwest
peaks somewhat (OR ~1.5), elevates the east-
ern peaks (OR ~1.5), and elevates peaks in
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Figure 6. k-Smoothed crude and adjusted ORs. (A) k-Smoothed crude ORs (k = 50). (B) k-Smoothed
adjusted ORs (k = 50). (C) k-Smoothed crude ORs (k = 30). (D) k-Smoothed adjusted ORs (k = 30). (E) k-
Smoothed crude ORs (k = 10). (F) k-Smoothed adjusted ORs (k = 10).

Figure 7. k-Smoothed adjusted ORs. (A) k-Smoothed adjusted ORs (k = 50). (B) k-Smoothed adjusted ORs (k = 30). (C) k-Smoothed adjusted ORs (k = 10).
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the southwest (OR ~1.4) (Figure 6B).
Reducing the k parameter to 30 controls pre-
sents a similar pattern of elevations and
depressions (Figure 6C,D). However, some
new peaks become apparent in a northwest-
erly direction from the eastern peaks, and one
of the newly evident peaks persists after
adjustment (OR ~1.5; Figure 6D). Reducing
the adaptive smoothing parameter further, to
10 controls, yields still more variation
(Figure 6E,F). In addition to the peaks seen
in Figure 6A–D, peaks now appear in both
the south-central (OR ~2.3) and east-central
(OR ~2.1) portions of the study area.
Adjustment had little qualitative effect on
the results for this smoothing parameter in
terms of either location or magnitude. The
magnitude of the adjusted ORs ranges from
0 to 3.2. Placing the ORs on the same verti-
cal scale gives the sequence of surface plots in
Figure 7, which graphically shows the rela-
tion between k-value and spatial smoothing.
(Because the surface plot wireframe contains
averaged values, it imposes an additional
degree of smoothing compared with the
image plots.)

Selecting adjusted ORs among the highest
2.5 percentile for each k parameter gives a set
of adaptively sized circles (Figure 8). Figure

9A–C displays the polycircles derived from
these results. Table 4 summarizes the num-
bers of cases and controls ever having lived
within each of the polycircular regions, and
the related crude and adjusted ORs. Regional
membership in a polycircle is defined nonex-
clusively as subjects who ever lived within the
polycircle. The reference group is defined
exclusively as subjects who never resided in
any of the polycircles. The reference group is
thereby a fixed subpopulation of 138 cases
and 453 controls. For each k-specific polycir-
cle analysis, some subjects belong to neither
the reference group nor the k-specific polycir-
cles. For instance, in the k = 50 analysis,
Table 4, section k = 50 does not tabulate sub-
jects who did not have a residence in the k =
50 polycircles and who did have a residence
within the k = 30 or k = 10 polycircles. These
subjects are in neither the reference group nor
the k = 50 polycircles’ population. The num-
bers of subjects shown in each section in
Table 4 therefore sum up to less than the total
number of cases and controls.

Residential membership in the three k =
50 polycircles (Figure 9A) is associated with
a relative risk of 1.7–1.9, after adjustment
(Table 4, top). Residential membership in
either of the two k = 30 polycircles (Figure

9B) is associated with an approximate 2.0-
fold relative risk, after adjustment (Table 4,
middle), whereas adjusted ORs for the k =
10 polycircles range from 1.6 (95% CI,
0.8–3.2) to 3.1 (95% CI, 1.3–7.2). These
relative risk estimates are relative to those
subjects who never lived in any polycircle.

Discussion

We began the exploration of case and con-
trol residency distribution by making visual
comparisons of dot maps. Such a compari-
son was problematic because compensating
visually for the greater number of controls
and the irregular boundary edges was diffi-
cult. These distributions may also be skewed
representations of the numbers of persons in
case and control groups, because they plot
the history of residence (e.g., a clump of
multiple residences may belong to a single
case). This suggested the need for regionally
grouped incidence rate ratio estimates.

Crude and adjusted ORs. We can inter-
pret the calculated ORs as ratios of resi-
dence-within-region incidence to total study
population incidence. The comparison is
conservative for two reasons. First, the refer-
ence population is diluted by the subgroup
of interest. Second, the baseline (OR = 1)
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Figure 8. Adaptive circles with adjusted ORs in the upper 2.5 percentile. (A) k = 50 circles. (B) k = 30 circles. (C) k = 10 circles.

Figure 9. Polycircles for adaptively smoothed, adjusted analyses. (A) k = 50 polycircles. (B) k = 30 polycircles. (C) k = 10 polycircles. Letters next to polycircles cor-
respond to data and results in Table 4. 

A B C

A B C



comprises a population known to have an
elevated incidence of breast cancer as a
whole, compared with statewide, age-stan-
dardized incidence (1,19).

We considered several alternatives in
choosing a reference group and method of
multivariate adjustment. Dividing the study
population into many subgroups and defin-
ing one of them as a reference category
would produce less precise estimation the
subgroups are numerous and any reference
group would be small (20). This procedure
also requires removing a subgroup from
analysis. Adjustment using indirect standard-
ization (standardized incidence ratios) is an
alternative that would yield noncomparable
estimates when the target populations differ
in their distributions of the standardizing
variable or weights (21). Furthermore, stan-
dardization will be invalid if the number of
expected cases in any stratum is small (21).

Our resolution to the issue of adjust-
ment was to extend the strategy employed
for crude estimation: Use the entire study
population as reference group. We could
then obtain adjusted ORs via a logistic
regression model that included a set of
potentially confounding variables. The
adjusted ORs can be thought of as compar-
ing within-group incidence of disease
(defined by residential location) with disease
incidence of the entire study population,
controlling for a set of attributes indepen-
dently associated with the disease. As in the
crude analysis, this choice of reference pop-
ulation produces conservative incidence rate
ratio estimates but artificially narrowed pre-
cision estimates (not reported), because the
total number of study subjects is artificially
increased (total plus within-region popula-
tion). These considerations led us to devise
a follow-on analysis of polycircles that uses
an exclusive reference group.

Regional membership. The grid analysis
divided the study area into equal-sized grid
cells at three scale levels, producing a set of
crude and adjusted ORs for each scale. The
observed associations between residential
location and breast cancer incidence may be
contingent on the specific set of grid bound-
aries. For example, a group of neighboring
cases that, if taken together, would represent
a stable excess could nonetheless be split into
negligibly small subgroups by the grid
boundaries. Also, areas of equal size fre-
quently contain unequal populations and are
not comparable in terms of precision.
Although the issue is to some extent
unavoidable with any set of nonoverlapping
boundaries, it could be addressed in future
investigations by simultaneously varying the
scale, shape, and boundaries of grid units.

The method of adaptive k-smoothing
avoids some of the drawbacks related to
measuring ORs using grid cells. By stipulat-
ing a fixed number of controls (k) for the
ratio of cases to controls for every adaptive
circle, relative risk estimates of comparable
magnitude are also of comparable numerical
stability. In principle, applying adaptively
sized, overlapping circles produces a
smoother map of incidence rate ratios while
preserving small-scale estimates where the
underlying numbers are ample. Because the
rate ratio estimates are spatially referenced to
a large number of point locations, they can
be interpolated and used with continuous
modes of graphic representation such as
image and surface plots. These visualization
tools allow easy identification of high and
low values. On the other hand, interpolated
summarization of the adaptively smoothed
results gives the impression that the study
population is evenly distributed, even
though it is not. Consequently, plateaus in
the interpolated graphics do not necessarily

represent areas with uniform level of inci-
dence rate ratios. A plateau may instead rep-
resent a sparsely populated area, or even an
unpopulated area, where distant relative risk
estimates are similar because of the applica-
tion of large circles. The spatial extent of fea-
tures on adaptively smoothed maps needs to
be interpreted cautiously.

Both the grid and k-smoothing methods,
as we have implemented them, use a nonex-
clusive reference group, the total study popu-
lation. This choice of reference group gives
conservative incidence rate ratio estimates and
inflated precision estimates (not reported).
The bias toward the null is minor for small
subpopulations and does not change rank
order relations of rate ratio estimates within
the study population. Assessing statistical sta-
bility, however, is a general issue that needs to
be addressed. Numbers of cases and controls
could have been documented for the grid
analysis, but this would have been cumber-
some to interpret. Adaptive k-smoothing has
the advantage of obtaining estimates of simi-
lar stability across the study area for a given k
parameter. However, adaptive k-smoothing
does not allow a straightforward specification
of the numbers of cases and controls, because
the underlying circular units are overlapping
and not visible in the graphical summaries.
Neither method is designed to adjust for resi-
dency migration within the study area, so
possible residency correlation between subre-
gions is not accounted for.

These considerations led us to construct
a follow-on analysis that summarizes and
extends the results of adaptive k-smoothing.
By cutting off a selection of peak values
obtained from the adjusted k-smoothing
analyses, and then joining any overlapping
circles, we defined polycircular “hot spot”
regions. This discrete set of polycircles offers
several useful features: a) specific identifica-
tion of the areas associated with the most
elevated incidence rates, b) enumeration of
how many cases and controls have resided
therein, c) calculation of incidence rates rela-
tive to an exclusive reference group, and d)
estimation of confidence intervals. The main
disadvantage of the polycircle analysis is that
it represents just one cutoff (in this case, the
upper 2.5 percentile). However, areas that
would be included by increasing the cutoff
percentile can be inferred from the k-
smoothing plots, which represent all results.

In the polycircle analysis, we computed
confidence intervals without adjustments for
multiple comparisons or the data-driven pro-
cedure of selecting peak results. The reported
confidence intervals are based only on the
observed data, using conventional single-
inference methods. Also, each confidence
interval is ascribed to a polycircle for which
there is in fact only one data sample. We
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Table 4. Crude and adjusted ORs for polycircular regions. 

Region No. cases No. controls Crude OR Adjusted OR (95% CI)

k = 50
A 33 63 1.7 1.7 (1.0–2.7)
B 47 93 1.7 1.8 (1.2–2.7)
C 23 51 1.5 1.9 (1.1–3.2)
Referencea 138 453 1 1

k = 30
A 28 48 1.9 1.9 (1.1–3.2)
B 33 52 2.1 2.2 (1.3–3.5)
Referencea 138 453 1 1

k = 10
A 14 16 2.9 3.0 (1.4–6.6)
B 9 13 2.3 2.2 (0.8–5.5)
C 15 19 2.6 2.4 (1.1–5.0)
D 17 25 2.2 1.6 (0.8–3.2)
E 11 12 3.0 2.6 (1.0–6.3)
F 9 10 3.0 2.9 (1.1–7.8)
G 9 13 2.3 2.3 (0.9–5.9)
H 11 14 2.6 3.1 (1.3–7.2)
Referencea 138 453 1 1

aNever lived in any polycircle for k = 10, 30, or 50.



believe these intervals offer a more inter-
pretable assessment of statistical precision
than do intervals that would incorporate
somewhat arbitrary aspects of analysis such as
the total number of comparisons made or the
percentile cutoff of peak values. Adjustments
for multiple comparisons would increase the
type II (false negative) error rate and assume
a universal null hypothesis (18). Neither of
these traits is justified in an exploratory
analysis, where one assumes that some associ-
ations are truly non-null, and the goal is to
uncover any evidence leading to more spe-
cific identification of the factors involved.

Interpretation of results. Breast cancer
incidence in this study population was not
uniformly distributed with respect to residen-
tial location. Residential location within three
subregions—in the northwest, southwest, and
east—was associated with increased incidence
of disease relative to the study population as a
whole. These hot spots were consistently
observable at different spatial scales and using
both fixed and adaptive spatial boundaries.
Adjusting for age and other individual risk
factors had only minor influence on the over-
all spatial distribution of incidence rate ratios.

To assess the possibility that the observed
associations represent one or more underlying,
geographically situated environmental risk fac-
tors, we must consider alternative explanations.
First, the observed spatial associations may be a
reflection of geographic confounding: any con-
fluence of nonenvironmental factors associated
with residential location, independently associ-
ated with the disease outcome, that thereby
produces a spatial association.

We used a multivariate logistic regres-
sion analysis to control for confounding by
the selection variables (age and vital status),
and a set of variables representing character-
istics known to be most strongly associated
with breast cancer. Although some of the
overall variability of ORs decreased, and
specific ORs increased or decreased com-
pared with the crude results, neither the
overall pattern nor specific localities exhibit-
ing excess changed appreciably. However,
confounding by unknown individual risk
factors or mismeasurement of the selected
potential confounding variables could
account for the spatial associations we have
highlighted and may have positively or neg-
atively influenced other parts of the spatial
distribution of association.

An alternative explanation for the
observed spatial associations is that the initial
sampling selection of controls was spatially

biased. We know that nonenrolled members
of the target population were similar to
enrolled subjects in demographic characteris-
tics; we do not know if they were also similar
in residency distribution. Other errors, such
as misplacement of mapped residences, could
also haphazardly create positive and negative
bias in the observed spatial associations.

Ultimately, the influence of factors
unknown to investigators cannot be assessed
directly. The possibility that an observed
result reflects a “chance” association can only
be judged indirectly, in terms of numerical
stability and statistical precision estimates.
Many of the relative risk estimates presented
here are numerically unstable, because of the
aim of assessing small regions with conse-
quently small populations. Numerical stabil-
ity can be enhanced at the expense of spatial
precision. Our approach has been to look at
multiple geographic scales and to place
greater emphasis on regional associations
revealed at more than one scale. A small-
scale association may be dismissed as mea-
surement error, but a larger, more stable
calculation is more difficult to discount.

Although it is impossible to exclude the
possibility that the results we have high-
lighted are due to “chance,” the associations
are stable enough to argue against this con-
clusion as an explanation for the hot spots.

Conclusions

Our aim was to use case–control data from
the Upper Cape Cod Cancer Incidence Study
to identify small-scale hot spots of breast can-
cer incidence that may lead to causal explana-
tions in further investigations. The findings
suggest several directions for further research.
One path is to explore subject interviews for
individual characteristics and nonenviron-
mental factors that might distinguish cases
from their controls who resided in the
observed hot spot regions. Another comple-
mentary task is to analyze the extent to which
previously investigated environmental expo-
sures (1,3,6,7) contribute to the observed spa-
tial patterns. The task then will be to explore
these extensive environmental history data in
a Geographic Information System (19) for
particular features of the hot spot regions with
the potential for human exposure (e.g., past
pesticide application). These tasks will assist
in generating causal hypotheses that can be
assessed in a forthcoming case–control study.
The addition of more years of incidence data
could also reveal areas of residence that are
persistently associated with excess incidence.
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